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Corrigendum

Nambu–Poisson manifolds and associated n-ary Lie algebroids
J A Vallejo 2001 J. Phys. A: Math. Gen. 34 2867–2881

There is an incorrect result in this paper, labelled theorem 9. In the proof it is stated that, by
the Leibniz property, it is necessary to check only that

[LP , [[. . . [[LP , a1], a2], . . .], an−1]] ∈ Dn−1

when the a′
i s are of the form f ∈ C∞(M), df ∈ 1(M). But this is incorrect. If we take, say,

a1 = f1 dg1, then other terms with a different structure appear, which cannot be cancelled by
the reasoning given in the paper. In fact, one might wonder if a different proof can be provided,
such as [LP , [[. . . [[LP , a1], a2], . . .], an−1]] ∈ Dn−1 when the ai’s are arbitrary 1-forms, but
this is not possible. From the definition of the bracket [[., . . . , .]]LP

, particularized to the n = 3
case for convenience, it is possible to obtain the relation

[[α1, α2, α3]]LP
= dP(α1, α2, α3) + i(q(α2 ∧ α3))dα1 − i(q(α1 ∧ α3))dα2 + i(q(α1 ∧ α2))dα3

and this is the bracket considered by Vaisman [1] and by Grabowski and Marmo [2], which is
known to work only with exact 1-forms. This relation holds for any n, so the bracket proposed
by the author cannot induce any n-ary Lie algebroid using the operator LP .

However, the author believes that the previous results leading to the incorrect theorem 9
are still correct. In particular, they leave open the question of whether there is an operator D,
different from LP , which can verify the conditions appearing in theorem 6, namely

[D, [[. . . [[D, a1], a2], . . .], an−1]] ∈ Dn−1

although, at the time of writing this note, the author has not been able to find a suitable one.
On the other hand, the results contained in section 6, are still valid, as they use the bracket

[[., . . . , .]]LP
only on exact 1-forms.

The coincidence of the bracket [[., . . . , .]]LP
with that proposed by Vaisman was very kindly

communicated to the author by M E Padrón and J C Marrero.
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